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Infinite-dimensional turbulence 
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i’ Observatoire de Nice and National Center for Atmospheric Research, Boulder, 
Colorado 80307, USA 

Received 21 July 1977 

Abstract. We have investigated infinite Reynolds number homogeneous isotropic turbu- 
lence for space dimensions d + 03 looking for possible simplifications. The calculations 
were done using both short-time expansions and renormalised expansions. For d -D CO 

non-linear interactions become confined to triads of wavevectors having one right angle. 
To all orders in perturbation the spectrum of the kinetic energy per mass has a finite limit 
provided a rescaled time f = t / J d  is used. It is shown that the incompressibility constraint 
does not drop out in infinite dimensions. No particular simplification has been found in 
any class of graphs which would be comparable to what happens in the large-d or high-n 
limits of critical phenomena. 

1. Introduction 

Over the last few years there have been several attempts to implement in the statistical 
theory of turbulence some of the concepts and tools which have been valuable in field 
theory and the theory of critical phenomena (de Gennes 1975; Martin er a1 1973; 
Nelkin 1974, 1975; see Rose and Sulem 1977 for review). In particular there has 
been a search for ‘crossover’ dimensions above or below which the calculation 
becomes trivial. For certain problems involving the largest eddies this search has been 
successful (Forster et a1 1976, 1977). There remains however the outstanding pro- 
blem of three-dimensional fully developed turbulence where deviations to Kolmo- 
gorov’s 1941 predictions are generally ascribed to the strongly non-Gaussian, inter- 
mittent character of the small scales (Frisch et a1 1977, Kolmogorov 1941 (also 1968), 
1962, Kraichnan 1974a). This problem does not seem to simplify in any finite space 
dimension d, although the properties of the energy cascade are found to be very much 
dependent on dimension near d = 2 (Frisch er a1 1976, Fournier and Frisch 1977a). It 
has been suggested that fully developed turbulence simplifies as d + CO (A A Migdal 
1976 and E D Siggia 1976, private communications). Furthermore it has been shown 
by Kraichnan (1974b) for the advection of a passive scalar by prescribed velocity fields 
with large-scale spatial gradients and white-noise time dependence, that the fluctua- 
tions in the small-scale distribution of the passive scalar go to zero as d +CO. It is also 
known that in critical phenomena taking the limit d + CC or n + CO (n = number of spin 
components) results in drastic simplifications and that various quantities can be 
expanded in powers of l /d  or l / n  (Gerber and Fischer 1974, 1975, Ma 1976). 
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It is the purpose of this paper to start an investigation of the d +CO limit for 
homogeneous isotropic fully developed turbulence. In order to take the limit we have 
to continue analytically the dimension of space. This can be done as in other fields of 
theoretical physics (Leibbrandt 1975), term by term in the systematic perturbation 
expansions of the relevant statistical quantities, such as the energy spectrum. 

2. Taylor expansions in time 

The Navier-Stokes equation in d (integer) dimensions reads 

-+E yax,=-- axi + u v 2  v, at j = l  
i =  1,. , . , d 

a v ,  aVi 

Dropping viscosity (see below for the U + 0 limit) and noticing that the pressure is a 
quadratic functional of the velocity we may rewrite the Navier-Stokes equation 
symbolically as 

v =  vv. 
Taking successive time derivatives evaluated at t = 0 we then obtain a formal Taylor 
series 

V(t)= V0+tV0V0+t2V0VOV0+ . . . (2.3) 

where Vo stands for the initial velocity field. If the initial conditions are random, any 
single, or multiple, time moment of the velocity field can be expressed as a single or 
multiple time Taylor series involving the initial moments. This takes a particularly 
simple form when initial conditions are Gaussian homogeneous isotropic of zero mean 
as will be assumed henceforth. We then obtain for the energy spectrum E (see 0 3 for 
precise definition) 

E(?)  = EO + tZEoEo + t4EoEoEo + . . . . (2.4) 

Odd-order terms vanish by the Gaussian assumption. As we shall see it is then easy to 
continue this expansion term by term into arbitrary, possibly non-integer, dimensions. 

What do we know about the convergence properties of such expansions and their 
relation to the actual turbulence problem? Recall that for the infinite Reynolds 
number problem one must carefully take the limit U + 0, which is certainly not the 
same as putting U = 0 from the start (Brissaud et a1 1973, Orszag 1976, Rose and 
Sulem 1977). A priori there is no reason to believe that the series (2.4) has more than 
a zero radius of convergence (Kraichnan 1966, 1970): indeed, individual realisations 
of the inviscid Navier-Stokes equation (Euler equation) in any dimension d > 2 are 
likely to blow up at a finite time which by the Gaussian assumption can be arbitrarily 
close to r = 0. This question has recently been investigated on the Burgers equation 
which is known to produce singularities at a finite time. Fournier and Frisch (1977b) 
have shown that for any finite wavenumber k this formal Taylor series (in the above 
sense) of the energy spectrum around t = O  has an infinite radius of convergence. 
There are also strong indications that the formal solution differs from the true solution 
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(v + 0) by a non-analytic function with an identically vanishing Taylor series (some- 
thing like exp(-l/t*)) and therefore constitutes a very good approximation for short 
times. The non-analytic part stems from the very small fraction of realisations which 
have produced a singularity between 0 and t. 

For the Navier-Stokes equation the convergence and approximation properties of 
the formal expansion are unknown. Still, we shall use this expansion to investigate the 
short-time expansion of the statistical Navier-Stokes equation in d dimensions ($a 3 
and 4). 

The analytic continuation in dimension could conceivably be done on other 
expansions. For a finite positive viscosity it is possible to expand in powers of the 
non-linear term (Reynolds number expansion). This expansion coincides with the 
above formal one at zero viscosity; its convergence properties are not known (see 
Kraichnan 1966, 1970). For the purpose of this paper the Reynolds number expan- 
sion is essentially equivalent to the Taylor expansion. Finally there are the so called 
renormalised expansions (Martin er a1 1973, Kraichnan 1977 and private com- 
munication) the lowest order of which is the direct interaction approximation (DIA: 
see 0 5) .  

3. Second-order expansion 

Much of the structure of the formal expansion is already seen at second order. For 
statistically homogeneous initial conditions it is convenient to work in Fourier space, 
in which the Navier-Stokes equation is represented by 

where 

and 

is the transverse projection operator which arises from the pressure. The series (2.4) 
is now a functional of the velocity covariance 

(3.2) 

evaluated at the initial time t = t’ = 0. The following notation has been used. S,  is the 
surface of the d-dimensional unit sphere: 

and the energy spectrum E ( k ;  t, r’) is related to the mean kinetic energy per mass by 

lom E ( k ;  r, t ’)  dk = $( V2(r)>. (3.4) 
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When the tensor indices in (2.3) and (2.4) are made explicit, we obtain the formal 
expansion for Uii, whose trace yields the expansion for E.  To second order (setting 
v = 0): 

k 
4sd-1 1 dp dq b'd'(k, p ,  q)  E(&; t, t ) = E ( k ;  0, O ) + t 2  

(d-1)2Sd A* 

x a k 2 E ( p ;  0 ,  O)E(q; 0,O) 

  sir^^-^ pp2E(q ;  O,O)E(k; 0, 0))+O(t4). 

The coefficient b'd' resulting from various contractions of Pii operators reads 

(3.5) 

I I ' ~ ' ( & ,  p ,  q ) = G [ ( d -  P 3)Z + (d  - 1)XY + 2 Z 3 ] .  

a, p and y are the angles opposite k, p ,  q in the k,  p ,  q triangle, X, Y and 2 being 
their cosines. The &dimensional Fourier space integration has been reduced to one 
over a strip Ak (see figure 1) in the p ,  q plane such that k, p ,  q can form a triangle (see 
Rose and Sulem 1977 for details). 

Figure 1. The domain Ak is limited by the triangular inequality ( p  - q l s  k G p + g ;  k, p ,  4 
are magnitudes of vectors. 

Because of the simplifications due to the assumptions of homogeneity and 
isotropy, all the tensor indices have disappeared, and the analytic continuation in d is 
straightforward. 

An asymptotic expansion has been carried out on (3.5) as d +-CO. It is seen that all 
the energy transfer comes from triads k, p ,  q with one right angle: in the emission term 
(the E(p)E(q)  term) because of the presence of ~ i n ~ - ~ a  most of the contribution 
comes from a = 7r/2, i.e. p and 4 almost orthogonal, whereas in the absorption term 
(the E(q)E(k)  term) it comes from 0 = 7r/2. 

The saddle point integration method reduces the integral over the A k  strip to line 
integrals shown in figure 2 and yields a factor 1/dd. The b'd' coefficient is 
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Figure 2. In the limit d -+ CO, all the energy transfer comes from triads k, p, q with one right 
angle. In the p ,  q plane, this yields a saddle-point integration over two lines, the ‘emission 
circle’ (C) and the ‘absorption hyperbola’ (H). 

proportional to d and 
s d - 1  2(L) 1/72 . 

(d- l )*Sd d Z  277 

Finally there remains a factor of the order of l / d  in front of the integrals which can be 
absorbed into a rescaled time i = t / Jd  yielding the infinite-dimensional second-order 
expansion (v = 0) 

E ( k ;  f , f ) = E ( k ;  0 , 0 ) + 2 i 2 k 3  lo d4(cos24E(kcos4 ;  O,O)E(ksin~$; 0,O) 
4 2 

1 - - - ~ ( k  tan 4 ;  0, o ) E ( ~ ;  o,o)). 
cos2 c$ 

4. Higher-order expansions 

In order to efficiently represent the higher-order terms in the expansion (2.4), 
diagrams will be used where 

stands for Uij(k;  0, 0), k 
i- 

k < q  

for the vertex -&Pijdk), and 

for 1 
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(the appearance of two kinds of lines, one for the covariance and one for the Green 
function, which assumes the value 1 for the inviscid linear case, is described in 0 5) .  

To order t2  the one-time spectrum is given by (multiplicities and viscous terms 
deleted) 

4 
k 

U,,(k; t, t )  = i j + t 2  

P 

4 

i 
+ t 2  j + o(r4). 

P 

To order t4, the following two classes of graphs appear, according to the structure 

(i) ‘Iterated’ second-order graphs (in the sense that the integrals are essentially 
of their Fourier integrals. 

simple combinations of those present in (4.1)) such as 

and (4.2) 

, . . . )  

these give contributions O((l/.\ld)4). 
(ii) ‘Vertex’-type graphs, such as 

Such graphs can be evaluated using generalised spherical coordinates involving three 
angles, say 

= ( P  - r, k); e2 = (k -P, w ;  83 = (Pk(p - r ) ,  Pk(k - p ) >  
where Pk denotes the projection onto the plane perpendicular to k. The volume 
element will then contain high powers (-d) of the product sin sin 82 sin 03. By 
saddle-point integration, for d + 00, this gives three orthogonality conditions (8, = 
62 = 83 = ~ / 2 )  and three factors 1/Jd.  This is in contrast with the iterated second- 
order graphs which, because of their simple topological structure, give only two 
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orthogonality conditions. At first sight this seems to imply that fourth-order vertex 
terms become negligible for d+00. In fact, fourth-order vertex terms are as big as 
iterated terms, i.e. O((t/Jd)4), the reason being that the volume element in spherical 
coordinates with three angles is proportional to sd-1sd-2 (instead of Sd-1Sd-1 for 
iterated second order). Since S d - 2  - Sd-lJd this cancels the extra 1 / J d  factor. 

This analysis has been extended to graphs of order 2n, which are all found to be 
O((t/Jd)2"). We therefore conclude that as a function of the rescaled time variable 
f = t/Jd, all the terms in the formal Taylor expansion of E ( k ;  t, t )  have a limit as 
d +a, In addition, no class of diagrams becomes negligible in this limit. This is in 
contrast with the Heisenberg magnet in equilibrium critical phenomena, which has a 
four-point vertex and where a crucial role is played by the concept of diagrammatic 
loops: e.g. each loop gives a factor n (the number of spin components). In the limit of 
n + 00, these factors select from all possible diagrams a summable subset which then 
leads to the l / n  expansion. For the Navier-Stokes equation which has a three-point 
vertex, and is treated as an initial value problem, it can be shown that there does not 
exist any parallel to the concept of loop, and hence no direct counterpart to the l / n  
expansion. Though one does not have the freedom to vary n (now the number of 
velocity components) and d independently in the Navier-Stokes equation because the 
number of velocity components and the number of space dimensions are by necessity 
equal, it is possible to introduce an additional integer parameter, m, by changing each 
component of the velocity into an m X m matrix. The possible consequences have not 
yet been explored. 

5. Renormalised expansions 

The formal Taylor series is a functional of the initial covariance Uii(k; O , O ) ,  or 
equivalently of what the covariance would be in the absence of interaction between 
the Fourier modes. Similarly, in the Reynolds number expansion, there appears the 
covariance as it evolves under the effect of only the linear viscous term in the 
Navier-Stokes equation, as well as the velocity amplitude Green function of this linear 
system. It is possible to revert these expansions and express the linear system's 
covariance and Green function in terms of those of the Navier-Stokes equation, and 
then substitute for the former in the Taylor or Reynolds-number expansions. This 
procedure is known as renormalisation. The perturbation theory obtained, whose 
lowest-order truncation is the DIA, is known as the renormalised expansion (Martin et 
a1 1973, Kraichnan 1977, where vertex renormalisation is also discussed). This 
expansion also has a diagrammatic representation, a consolidated version of the 
Taylor series diagrams, where - and ___ stand for the covariance and the 
mean velocity amplitude linear response function (Green function) of the Navier- 
Stokes equation respectively. 

For example, let us consider the d-dimensional DIA equations, which read (V = 0): 

x a k2E(p;  1, T)E(q; t, r ) G ( k ;  t', T )  

/3p2E(q; t, T)E(k; T,  t ' )G(p;  t, 7)) 
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P p 2 E ( q ;  t, 7 ) G ( k ;  7, t ' )G(p ;  t, 7). 

G ( k ;  t, t ' )  is related to the linear response function as usual: 

Gii (k;  t, t f ) = P i i ( k ) G ( k ;  t ,  t ' ) ;  G ( k ;  t ' ,  t ' ) =  1.  

Note the algebraic similarity to the second-order Taylor expansion. This similarity 
also holds for their respective diagrammatic representations. If the DIA itself is 
expanded in a Taylor series, the O(r2) terms coincide with those given by (4.1) and the 
O(t4) terms coincide with the iterated second-order diagrams (4.2). 

The d + CO limit of the DIA can be taken, provided the same time rescaling is 
performed, i.e. i = t / Jd ,  with the result 

m / 2  a 
a i  0 
-E(k,  I ,  i') = 2k3 I d? d4(cos2 4 E(k cos 4; f ,  ?)E(k sin 4; f, ?)G(k;  f', +) 

(5.3) -- E(k  tan 4;  i, ?)E(k;  +, f ' )G(k/cos 4; i, ?)) 
cos2 4 

a 
- G ( k ;  i, i ' ) = ~ ( i - f ' )  a i  

" E ( k  tan 4;  i, i ) G ( k ;  F, i')G(k/cos 4; f ,  +). 

(5  -4) 
As is the case for d = 3 (Kraichnan 1959) there exist inertial range solutions of the 
form (d large, E =energy injection rate per unit mass and per unit primitive time, 
Vo = root mean square velocity) 

E ( k )  = Cd'/4(~V0)1'2k-3'2, ( 5 . 5 )  

which suffer from the well known defect (Kraichnan 1964) of having an explicit 
dependence upon Vo, and hence being non-invariant under a random Galilean trans- 
formation: i.e. if the initial conditions are changed by adding energy at zero 
wavenumber, 

E ( k ;  O,O)+E(k;  O,O)+$SV:S(k) v,'+ V,'+SV,', (5 .6)  

E ( k ;  t, t ) + E ( k ;  t, t)+iSV,'S(k), 

then because of the Galilean invariance of the Navier-Stokes equation 

(5 .7)  
which is inconsistent with (5 .5) .  This defect can be cured by the ad hoc elimination 
from the Navier-Stokes equation of the so called 'non-local' interactions which couple 
eddies of widely disparate size. If this is done, then the Kolmogorov 1941 spectrum 
obtains: 

( 5 . 8 )  E ( k )  = C ' d 1 / 3 E 2 / 3 k - 5 / 3  

The characteristic time for the dynamics of the energy containing scales (presumably 
the time for the appearance of a singularity at zero viscosity) goes like d 1 l 2 .  
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The renormalised approximations which retain terms in addition to those of the 
DIA, are called the vertex corrected approximations. Their diagrammatic represen- 
tation contains, to the next order beyond the DIA, graphs which formally coincide with 
those in (4.3); their dependence upon d in the limit d +CO is similar, i.e. the vertex 
corrections are not negligible compared to the DIA terms. Any other conclusion 
would lead to a serious difficulty because of the non-invariance of the DIA under a 
random Galilean transformation. 

Since the renormalised expansion, in contrast to the Taylor expansion, is not a 
priori limited to short times, and since it is believed that E ( k ;  t, t) will assume a power 
law behaviour in the limit of large k after a finite time for d > 2 (even if the initial 
spectrum was confined to a finite wavenumber domain (Frisch er a1 1976)) one is 
led to ask if the integrals contained in these expansions are convergent. They must 
be convergent in order that their dependence upon d may be simply deduced as was 
done above. Of course, this question is absent for the Navier-Stokes equation with 
cut-off non-local interactions. In the formal Taylor expansion of E ( k ;  t, t ) ,  assum- 
ing an initial power-law spectrum E ( k ; O , O ) - k - "  ( l < m < 3 )  there are a 
number of superficial divergences (both infrared and ultraviolet) which disappear 
upon combining various terms or performing angular integrations. Some of these 
superficial divergences would probably never occur if we had used a Lagrangian 
expansion (Kraichnan 1977 and private communication). We have not yet 
investigated possible divergences in higher-order terms or moments. However, it 
has been shown rigorously for the Burgers equation (v = 0) in the context of the 
Taylor expansion, that there are no true divergences at any order for the energy 
spectrum and to order t3  for the triple moment (Fournier and Frisch 1977b). 

6. Pressure effects in infinite dimensions 

In large space dimensions the incompressibility condition 
d 

I = '  
1 k,V,(k)= 0 

seems to impose only a rather weak constraint. Could it be that incompressibility and 
hence the pressure term become unimportant as d +a? This question can be 
investigated by comparing two calculations. The first one with the Navier-Stokes 
vertex (equation (3.1)) involving the projection operator Pii and the second one with a 
Burgers-like vertex having only the Kronecker 8,. To allow for compressibility we 
have to take a more general form of the covariance, namely 

2 

where 
rIij(k) = kikj/k2. 

E" (s for solenoidal) is the incompressible spectrum and E' the compressible spectrum. 
Starting with incompressible initial conditions we have shown that to order r 2  the 
pressure term makes no contribution to the incompressible part; but if pressure is 
deleted, a compressible part is generated in the t2  coefficient which carries an energy 
O(d-')  smaller than the compressible part. Nevertheless, by going to higher order 
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(e.g. r4) this incompressible part induces an 0 (1 )  change on the incompressible part. 
This clearly indicates that the two problems are not equivalent (at least within the 
framework of short-time expansions). 

7. Summary and discussion 

We restate now the principle technical results of the paper and discuss their physical 
content. We begin with three kinematic results. First it was pointed out to us by S 
Corrsin (1977, private communication) that for d +CO the longitudinal and transverse 
correlation functions become identical. This is easily checked by expressing the 
incompressibility condition as is done in Batchelor (1953). Second, we have found in 
00 3 and 4 that for d + CO non-linear interactions are confined to triads k ,  p ,  q having 
one right angle ( k 2 = p 2 + q 2 ,  or permutations). This is simply understood by noting 
that two independent isotropic unit vectors are almost surely orthogonal in infinite 
dimension (the variance of their scalar product is l / d ) .  This has an important 
consequence for transfer: if initially the energy is confined to a wavenumber band 
a < k < b then it can never be transferred to wavenumbers less than a since the 
interaction of two orthogonal wavevectors within that band necessarily results in a 
wavenumber larger than a (this can also be seen on the emission term of the 
infinite-dimensional DIA equation (5.3)). Third, from the probabilistic viewpoint, 
having infinite dimensionality introduces a very interesting new element into the 
problem: in finite-dimensional homogeneous isotropic turbulence, ensemble averages 
can be replaced by translational averages (if ergodicity holds); in infinite-dimensional 
turbulence it is likely that one can in addition take rotational averages or simply 
average over the group of cyclic permutations of the coordinates. For example, if we 
know the velocity vector at (almost) any particular point we can calculate the mean 
square energy per component as 

Turning to more dynamical questions we first stress that it has been found that to 
each order in perturbation the energy spectrum per mass has a finite Zimit provided a 
rescaled time variable, ? = t / Jd ,  is used. We can therefore truly speak of an infinite- 
dimensional turbulence problem. Now, it is easily checked, say on (2.4), that it is 
equivalent to rescale the time variable by J d  or to rescale the energy spectrum by d ;  
the latter is equivalent to assuming finite energy per component rather than a finite 
total energy. It is of interest to recast this result entirely in physical space. As may be 
checked by writing the Fourier transformation for a function which depends only on 
the modulus of the d-dimensional position vector, the assumption that wavenumbers 
remain finite (implicitly made since they are not rescaled) implies that the typical 
Euclidean separation, r, of two points within an eddy is O(Jd) whereas individual 
components of r are O(1). This, together with the assumption of finite energy per 
component imply that typical components of the strain tensor are O ( l / J d )  and that its 
typical eigenvalues are O(1)f. It is then not surprising to find that the characteristic 
dynamical time also becomes O( 1). 
+ T h e  order of magnitude of the strain tensor components can again be calculated by Fourier transformation 
and the orders of magnitude of the eigenvalues follow from a well known theorem on large random 
symmetric matrices (Wigner 1955, Edwards and Jones 1976). 
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We discuss now pressure effects. It might be asked if the incompressibility con- 
straint k. Vk = 0 still plays a significant role as d + CC. It has been found that it does 
indeed: as stated in 0 6 it is not legitimate to replace the Navier-Stokes vertex (with 
incompressibility projection operators Pi i (k ) )  by a ‘Burger’s’ vertex with Sii instead of 
Pij;  the use of a Burger’s vertex would result in a significantly different DIA equation 
(with energy conservation problems in addition). Nevertheless, we notice that the 
pressure is given by a Poisson equation with a source 

which is a sum of a large number ( d 2 )  of terms; hence the pressure and the pressure 
gradient should depend only weakly on individual components of the velocity and/or 
the velocity gradient. It may therefore be conjectured that if there is an anisotropy 
affecting a finite number of velocity components the pressure will not be able to 
restore isotropy over a time of the order of the dynamical time as is the case in three 
dimensions (Herring 1974, Herring and Schumann 1976, Rotta 1951, 1962). 

Finally we want to comment on the non-vanishing of vertex corrections (§ 5) and 
the possible relevance to the question of intermittency. It is clear that in an expansion 
based on Eulerian coordinates, vertex corrections cannot drop out since the DIA (even 
in the limit of infinite dimensions) is not invariant under random Galilean trans- 
formations as are the primitive equations. Recently Kraichnan (1977) has introduced 
a mixed Eulerian-Lagrangian systematic expansion which is to each order invariant 
under random Galilean transformations and reproduces to lowest order the Lagran- 
gian history direct interaction (which is known to produce the k-5’3 spectrum; 
Kraichnan 1965). Such Galilean invariant renormalised expansions are particularly 
cumbersome beyond their lowest order and we have not tried to analyse their high-d 
limit. It might be tempting to investigate the question of intermittency in the sense of 
deviations to the Kolmogorov 1941 theory using such expansions but it must be 
stressed that the presence of vertex corrections, even in a Galilean invariant expan- 
sion, does not rule out the absence of intermittency. As pointed out to us by 
RHKraichnan (1977, private communication) it could just mean that there are 
corrections to the Kolmogorov constant (the numerical constant in front of ~ * ’ ~ k - ’ ’ ~ )  
without corrections to the exponent. 

At this point we would like to comment about a result on infinite-dimensional 
turbulence obtained by Kraichnan (1974b) in a rather different context. Assuming a 
prescribed homogeneous isotropic incompressible velocity field, with white-noise time 
dependence, Kraichnan shows that the distribution of the modulus of the gradient of a 
passive scalar is log normal and goes over into a deterministic distribution as d + CO so 
that intermittency disappears. It might be argued that stretching of vortex lines (or 
whatever their d-dimensional substitute is) has some resemblance to the stretching of 
a passive vector and, hence, that the intermittency of the vorticity field might disap- 
pear as d +CO. However in Kraichnan’s calculation the successive stretchings are 
totally uncorrelated so that the scalar gradient has the possibility of exploring all 
directions whereas in the Navier-Stokes equation the velocity or the velocity gradient 
is, loosely speaking, self-stretching and there is no reason to expect abrupt changes in 
the direction of stretching. 

We believe that it is of major importance to find out what happens to intermittency 
as d + CO. Finite-dimensional turbulence might become calculable by l / d  expansion if 
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the intermittency disappears or if it takes some extreme, calculable, form as it does in 
Burger’s equation. 
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